\(\int \frac {(c+d \sin (e+f x))^{3/2}}{3+b \sin (e+f x)} \, dx\) [746]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 227 \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+b \sin (e+f x)} \, dx=\frac {2 d E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{b f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {2 (b c-3 d) d \operatorname {EllipticF}\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{b^2 f \sqrt {c+d \sin (e+f x)}}+\frac {2 (b c-3 d)^2 \operatorname {EllipticPi}\left (\frac {2 b}{3+b},\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{b^2 (3+b) f \sqrt {c+d \sin (e+f x)}} \]

[Out]

-2*d*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)
*(d/(c+d))^(1/2))*(c+d*sin(f*x+e))^(1/2)/b/f/((c+d*sin(f*x+e))/(c+d))^(1/2)-2*d*(-a*d+b*c)*(sin(1/2*e+1/4*Pi+1
/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticF(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*((c+d*
sin(f*x+e))/(c+d))^(1/2)/b^2/f/(c+d*sin(f*x+e))^(1/2)-2*(-a*d+b*c)^2*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1
/2*e+1/4*Pi+1/2*f*x)*EllipticPi(cos(1/2*e+1/4*Pi+1/2*f*x),2*b/(a+b),2^(1/2)*(d/(c+d))^(1/2))*((c+d*sin(f*x+e))
/(c+d))^(1/2)/b^2/(a+b)/f/(c+d*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {2883, 2734, 2732, 2882, 2742, 2740, 2886, 2884} \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+b \sin (e+f x)} \, dx=\frac {2 d (b c-a d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \operatorname {EllipticF}\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right ),\frac {2 d}{c+d}\right )}{b^2 f \sqrt {c+d \sin (e+f x)}}+\frac {2 (b c-a d)^2 \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right ),\frac {2 d}{c+d}\right )}{b^2 f (a+b) \sqrt {c+d \sin (e+f x)}}+\frac {2 d \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{b f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}} \]

[In]

Int[(c + d*Sin[e + f*x])^(3/2)/(a + b*Sin[e + f*x]),x]

[Out]

(2*d*EllipticE[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[c + d*Sin[e + f*x]])/(b*f*Sqrt[(c + d*Sin[e + f*x])/(c
+ d)]) + (2*d*(b*c - a*d)*EllipticF[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(b^
2*f*Sqrt[c + d*Sin[e + f*x]]) + (2*(b*c - a*d)^2*EllipticPi[(2*b)/(a + b), (e - Pi/2 + f*x)/2, (2*d)/(c + d)]*
Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(b^2*(a + b)*f*Sqrt[c + d*Sin[e + f*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2882

Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[d/b
, Int[1/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b, Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e +
f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2883

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[b
/d, Int[Sqrt[a + b*Sin[e + f*x]], x], x] - Dist[(b*c - a*d)/d, Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x
]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {d \int \sqrt {c+d \sin (e+f x)} \, dx}{b}-\frac {(-b c+a d) \int \frac {\sqrt {c+d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx}{b} \\ & = \frac {(d (b c-a d)) \int \frac {1}{\sqrt {c+d \sin (e+f x)}} \, dx}{b^2}+\frac {(b c-a d)^2 \int \frac {1}{(a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx}{b^2}+\frac {\left (d \sqrt {c+d \sin (e+f x)}\right ) \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}} \, dx}{b \sqrt {\frac {c+d \sin (e+f x)}{c+d}}} \\ & = \frac {2 d E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{b f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {\left (d (b c-a d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}\right ) \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}} \, dx}{b^2 \sqrt {c+d \sin (e+f x)}}+\frac {\left ((b c-a d)^2 \sqrt {\frac {c+d \sin (e+f x)}{c+d}}\right ) \int \frac {1}{(a+b \sin (e+f x)) \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}} \, dx}{b^2 \sqrt {c+d \sin (e+f x)}} \\ & = \frac {2 d E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{b f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {2 d (b c-a d) \operatorname {EllipticF}\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{b^2 f \sqrt {c+d \sin (e+f x)}}+\frac {2 (b c-a d)^2 \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{b^2 (a+b) f \sqrt {c+d \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 20.48 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.06 \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+b \sin (e+f x)} \, dx=\frac {2 i \left (b (c-d) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{c+d}} \sqrt {c+d \sin (e+f x)}\right )|\frac {c+d}{c-d}\right )+(3 d+b (-2 c+d)) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{c+d}} \sqrt {c+d \sin (e+f x)}\right ),\frac {c+d}{c-d}\right )+(b c-3 d) \operatorname {EllipticPi}\left (\frac {b (c+d)}{b c-3 d},i \text {arcsinh}\left (\sqrt {-\frac {1}{c+d}} \sqrt {c+d \sin (e+f x)}\right ),\frac {c+d}{c-d}\right )\right ) \sec (e+f x) \sqrt {-\frac {d (-1+\sin (e+f x))}{c+d}} \sqrt {-\frac {d (1+\sin (e+f x))}{c-d}}}{b^2 \sqrt {-\frac {1}{c+d}} f} \]

[In]

Integrate[(c + d*Sin[e + f*x])^(3/2)/(3 + b*Sin[e + f*x]),x]

[Out]

((2*I)*(b*(c - d)*EllipticE[I*ArcSinh[Sqrt[-(c + d)^(-1)]*Sqrt[c + d*Sin[e + f*x]]], (c + d)/(c - d)] + (3*d +
 b*(-2*c + d))*EllipticF[I*ArcSinh[Sqrt[-(c + d)^(-1)]*Sqrt[c + d*Sin[e + f*x]]], (c + d)/(c - d)] + (b*c - 3*
d)*EllipticPi[(b*(c + d))/(b*c - 3*d), I*ArcSinh[Sqrt[-(c + d)^(-1)]*Sqrt[c + d*Sin[e + f*x]]], (c + d)/(c - d
)])*Sec[e + f*x]*Sqrt[-((d*(-1 + Sin[e + f*x]))/(c + d))]*Sqrt[-((d*(1 + Sin[e + f*x]))/(c - d))])/(b^2*Sqrt[-
(c + d)^(-1)]*f)

Maple [A] (verified)

Time = 2.14 (sec) , antiderivative size = 391, normalized size of antiderivative = 1.72

method result size
default \(-\frac {2 \left (a F\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d -2 c b F\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )-F\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) b d +E\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) b c +E\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) b d -\Pi \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, -\frac {\left (c -d \right ) b}{d a -c b}, \sqrt {\frac {c -d}{c +d}}\right ) a d +\Pi \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, -\frac {\left (c -d \right ) b}{d a -c b}, \sqrt {\frac {c -d}{c +d}}\right ) b c \right ) \sqrt {-\frac {d \left (\sin \left (f x +e \right )+1\right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \left (c -d \right )}{b^{2} \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(391\)

[In]

int((c+d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

-2*(a*EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*d-2*c*b*EllipticF(((c+d*sin(f*x+e))/(c-d))
^(1/2),((c-d)/(c+d))^(1/2))-EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*b*d+EllipticE(((c+d*
sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*b*c+EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2)
)*b*d-EllipticPi(((c+d*sin(f*x+e))/(c-d))^(1/2),-(c-d)*b/(a*d-b*c),((c-d)/(c+d))^(1/2))*a*d+EllipticPi(((c+d*s
in(f*x+e))/(c-d))^(1/2),-(c-d)*b/(a*d-b*c),((c-d)/(c+d))^(1/2))*b*c)/b^2*(-d*(sin(f*x+e)+1)/(c-d))^(1/2)*(-(si
n(f*x+e)-1)*d/(c+d))^(1/2)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(c-d)/cos(f*x+e)/(c+d*sin(f*x+e))^(1/2)/f

Fricas [F(-1)]

Timed out. \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+b \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate((c+d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+b \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate((c+d*sin(f*x+e))**(3/2)/(a+b*sin(f*x+e)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+b \sin (e+f x)} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}{b \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((c+d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((d*sin(f*x + e) + c)^(3/2)/(b*sin(f*x + e) + a), x)

Giac [F]

\[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+b \sin (e+f x)} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}{b \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((c+d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate((d*sin(f*x + e) + c)^(3/2)/(b*sin(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+b \sin (e+f x)} \, dx=\int \frac {{\left (c+d\,\sin \left (e+f\,x\right )\right )}^{3/2}}{a+b\,\sin \left (e+f\,x\right )} \,d x \]

[In]

int((c + d*sin(e + f*x))^(3/2)/(a + b*sin(e + f*x)),x)

[Out]

int((c + d*sin(e + f*x))^(3/2)/(a + b*sin(e + f*x)), x)